SYNTHESIS OF ETHYL-X- PROPARGYL ACRYLATE - A USEFUL FIVE CARBON SYNTPON

V.T.Ravikumar, S.Swaminathan and K.Rajagopalan*

Department of Organic Chemistry, University of Madras
Guindy Campus, Madras 600 025, INDIA.

Abstract: The title compound has been synthesised via an alkylation, Wittig-Horner reaction sequence, Michael addition of several active methylene substrates with compound <u>l</u> has been carried out.

In connection with our studies on base catalysed rearrangements of oxy-Cope systems 1 , we required a five carbon synthon for annulation of cyclonomes. We report here a three-step synthesis of ethyl- α -propargylacrylate $\underline{1}$ which has the potentials to function as a five carbon Michael acceptor.

Alkylation of triethylphosphonoacetate $\underline{2}^2$ with propargyl bromide, in the presence of NaH in THF at room temperature for 6 h and then at reflux for 3 h gave the alkylated compound $\underline{3}$ as a colourless liquid in 71% yield. Wittig-Horner reaction of compound $\underline{3}$ with 30% formalin in the presence of saturated aqueous potassium carbonate $\frac{3}{3}$, gave the title compound $\underline{1}$ as a colourless liquid in 60% yield.

Several active methylene substrates have been found to undergo Michael addition to compound $\underline{1}$ in a clean manner and in fairly good yields only in the presence of a powerful base like sodium methylsulfinyl methide. The results are summerised in Table 1.

TABLE 1

NTRY	SUBSTRATE	PRODUCT ⁵	AIETD(%)
1	CH ₃ COCH ₂ COCH ₃	CH ₃ COCH(R)COCH ₃	62
2	CH3 CO CH2 COC2 H5	CH ₃ COCH(R) COOC ₂ H ₅	71
3	CNCH ₂ COOCH ₃	CNCH(R)COOCH3	55
4	C ₆ H ₅ CH ₂ CN	c ₆ h ₅ ch(r) cn	64
5	,O CH ₂ (CN) ₂	R-CH(CN) ₂	65
6		R OR	61
7	COCH 5 COOEt	COCH ₃ COOEt	53
8 (Co Co R	55
9		,R	58
10	> →•	=0	51

coc₂H₅

Reaction conditions: (a) A mixture of the substrate (0.1 mole), compound 1 (0.11 mole), NaH (0.1 mole) and dry DMSO 75 ml) was stirred at 25°C for 8h and at 80°C for 3-4h under nitrogen and worked up.

We expect the five carbon synthon to be quite valuable in the synthesis of a growing number of natural products containing a fused seven membered ring. We are currently investigating the utility of the synthon towards the synthesis of these compounds.

Acknowledgement: The authors gratefully acknowledge the Department of Science and Technology, Govt.of India for the financial support.

References:

- (la) C.Seshu Sekha Rao, G.Kumar, K.Rajagopalan and S.Swaminathan, Tetrahedron 1982, 38, 2195
- (1b) S.Swaminathan, <u>J.Ind.Chem.Soc.</u>, LXI, 99(1984).
- K.L. Erickzon, J. Org. Chem. 1965, 30, 2208.
- (3) J. Villieras, M. Rambaud, Synthesis, 1982, 924.
- For example Aciphyllaic acid, Centdarol, Spicatin, Perforenone, (4) Graminiliatrin have fused seven membered rings.
- Correct data were obtained for all the new compounds. (5)

(Received in UK 2 October 1984)